Impaired Cognitive Function and Altered Hippocampal Synapse Morphology in Mice Lacking Lrrtm1, a Gene Associated with Schizophrenia

نویسندگان

  • Noriko Takashima
  • Yuri S. Odaka
  • Kazuto Sakoori
  • Takumi Akagi
  • Tsutomu Hashikawa
  • Naoko Morimura
  • Kazuyuki Yamada
  • Jun Aruga
چکیده

Recent genetic linkage analysis has shown that LRRTM1 (Leucine rich repeat transmembrane neuronal 1) is associated with schizophrenia. Here, we characterized Lrrtm1 knockout mice behaviorally and morphologically. Systematic behavioral analysis revealed reduced locomotor activity in the early dark phase, altered behavioral responses to novel environments (open-field box, light-dark box, elevated plus maze, and hole board), avoidance of approach to large inanimate objects, social discrimination deficit, and spatial memory deficit. Upon administration of the NMDA receptor antagonist MK-801, Lrrtm1 knockout mice showed both locomotive activities in the open-field box and responses to the inanimate object that were distinct from those of wild-type mice, suggesting that altered glutamatergic transmission underlay the behavioral abnormalities. Furthermore, administration of a selective serotonin reuptake inhibitor (fluoxetine) rescued the abnormality in the elevated plus maze. Morphologically, the brains of Lrrtm1 knockout mice showed reduction in total hippocampus size and reduced synaptic density. The hippocampal synapses were characterized by elongated spines and diffusely distributed synaptic vesicles, indicating the role of Lrrtm1 in maintaining synaptic integrity. Although the pharmacobehavioral phenotype was not entirely characteristic of those of schizophrenia model animals, the impaired cognitive function may warrant the further study of LRRTM1 in relevance to schizophrenia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers

Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries. Reisolation of NGL-3/LRRC4B and neuroligi...

متن کامل

Leucine-Rich Repeat Transmembrane Proteins Are Essential for Maintenance of Long-Term Potentiation

Leucine-rich repeat transmembrane proteins (LRRTMs) are synaptic cell adhesion molecules that trigger excitatory synapse assembly in cultured neurons and influence synaptic function in vivo, but their role in synaptic plasticity is unknown. shRNA-mediated knockdown (KD) of LRRTM1 and LRRTM2 in vivo in CA1 pyramidal neurons of newborn mice blocked long-term potentiation (LTP) in acute hippocampa...

متن کامل

Sequencing of five left-right cerebral asymmetry genes in a cohort of schizophrenia and schizotypal disorder patients from Russia.

OBJECTIVE Schizophrenia is a severe psychiatric disorder, affecting ∼1% of the human population. The genetic contribution to schizophrenia is significant, but the genetics are complex and many aspects of brain functioning, from neural development to synapse structure, seem to be involved in the pathogenesis. A novel way to study the molecular causes of schizophrenia is to study the genetics of ...

متن کامل

The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety.

BACKGROUND Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-bas...

متن کامل

Neuronal Splicing Regulator RBFOX3 (NeuN) Regulates Adult Hippocampal Neurogenesis and Synaptogenesis

Dysfunction of RBFOX3 has been identified in neurodevelopmental disorders such as autism spectrum disorder, cognitive impairments and epilepsy and a causal relationship with these diseases has been previously demonstrated with Rbfox3 homozygous knockout mice. Despite the importance of RBFOX3 during neurodevelopment, the function of RBFOX3 regarding neurogenesis and synaptogenesis remains unclea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011